Simulating microbial community patterning using Biocellion.
نویسندگان
چکیده
Mathematical modeling and computer simulation are important tools for understanding complex interactions between cells and their biotic and abiotic environment: similarities and differences between modeled and observed behavior provide the basis for hypothesis formation. Momeni et al. (Elife 2:e00230, 2013) investigated pattern formation in communities of yeast strains engaging in different types of ecological interactions, comparing the predictions of mathematical modeling, and simulation to actual patterns observed in wet-lab experiments. However, simulations of millions of cells in a three-dimensional community are extremely time consuming. One simulation run in MATLAB may take a week or longer, inhibiting exploration of the vast space of parameter combinations and assumptions. Improving the speed, scale, and accuracy of such simulations facilitates hypothesis formation and expedites discovery. Biocellion is a high-performance software framework for accelerating discrete agent-based simulation of biological systems with millions to trillions of cells. Simulations of comparable scale and accuracy to those taking a week of computer time using MATLAB require just hours using Biocellion on a multicore workstation. Biocellion further accelerates large scale, high resolution simulations using cluster computers by partitioning the work to run on multiple compute nodes. Biocellion targets computational biologists who have mathematical modeling backgrounds and basic C++ programming skills. This chapter describes the necessary steps to adapt the original Momeni et al.'s model to the Biocellion framework as a case study.
منابع مشابه
Biocellion: accelerating computer simulation of multicellular biological system models
MOTIVATION Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the e...
متن کاملStrong inter-population cooperation leads to partner intermixing in microbial communities
Patterns of spatial positioning of individuals within microbial communities are often critical to community function. However, understanding patterning in natural communities is hampered by the multitude of cell-cell and cell-environment interactions as well as environmental variability. Here, through simulations and experiments on communities in defined environments, we examined how ecological...
متن کاملPatterning bacteria on agar for understanding distance mediated cell to cell signaling and metabolic exchanges
Microbes, while living in close proximity in biofilms, may in other cases not be closely localized in the environment. In the latter case, their interactions and communications are dependent on myriad factors such as existence of direct connections (e.g., web of hyphae from fungi) or pools of water where they could migrate. Hence, disparate groups of microbes could subsist on nutrients in their...
متن کاملAnalysis of Microbial Functions in the Rhizosphere Using a Metabolic-Network Based Framework for Metagenomics Interpretation
Advances in metagenomics enable high resolution description of complex bacterial communities in their natural environments. Consequently, conceptual approaches for community level functional analysis are in high need. Here, we introduce a framework for a metagenomics-based analysis of community functions. Environment-specific gene catalogs, derived from metagenomes, are processed into metabolic...
متن کاملCell death as a trigger for morphogenesis
The complex morphologies observed in many biofilms play a critical role in the survival of these microbial communities. Recently, the formation of wrinkles has been the focus of many studies aimed at finding fundamental information on morphogenesis during development. While the underlying genetic mechanisms of wrinkling are not well-understood, recent discoveries have led to the counterintuitiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Methods in molecular biology
دوره 1151 شماره
صفحات -
تاریخ انتشار 2014